- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0000000004000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Durcik, Polona (3)
-
CHRIST, MICHAEL (1)
-
DURCIK, POLONA (1)
-
KOVAČ, VJEKOSLAV (1)
-
Kovač, Vjekoslav (1)
-
ROOS, JORIS (1)
-
Roos, Joris (1)
-
Slavíková, Lenka (1)
-
Stipčić, Mario (1)
-
Thiele, Christoph (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Durcik, Polona; Kovač, Vjekoslav; Stipčić, Mario (, The Journal of Geometric Analysis)Abstract For every $$\beta \in (0,\infty )$$ β ∈ ( 0 , ∞ ) , $$\beta \ne 1$$ β ≠ 1 , we prove that a positive measure subset A of the unit square contains a point $$(x_0,y_0)$$ ( x 0 , y 0 ) such that A nontrivially intersects curves $$y-y_0 = a (x-x_0)^\beta $$ y - y 0 = a ( x - x 0 ) β for a whole interval $$I\subseteq (0,\infty )$$ I ⊆ ( 0 , ∞ ) of parameters $$a\in I$$ a ∈ I . A classical Nikodym set counterexample prevents one to take $$\beta =1$$ β = 1 , which is the case of straight lines. Moreover, for a planar set A of positive density, we show that the interval I can be arbitrarily large on the logarithmic scale. These results can be thought of as Bourgain-style large-set variants of a recent continuous-parameter Sárközy-type theorem by Kuca, Orponen, and Sahlsten.more » « less
-
Durcik, Polona; Slavíková, Lenka; Thiele, Christoph (, Mathematische Zeitschrift)
-
CHRIST, MICHAEL; DURCIK, POLONA; KOVAČ, VJEKOSLAV; ROOS, JORIS (, Ergodic Theory and Dynamical Systems)Abstract We prove almost everywhere convergence of continuous-time quadratic averages with respect to two commuting $$\mathbb {R}$$ -actions, coming from a single jointly measurable measure-preserving $$\mathbb {R}^2$$ -action on a probability space. The key ingredient of the proof comes from recent work on multilinear singular integrals; more specifically, from the study of a curved model for the triangular Hilbert transform.more » « less
An official website of the United States government
